Abstract
The simultaneous analysis of several anions and carbohydrates by one-dimensional chromatography with a single detector is often complicated by the presence of overlapping peaks. To overcome this problem, analytes are usually analyzed separately making analysis long and tedious. A method combining two-dimensional ion chromatography (2D-IC) and valve switching was developed for the simultaneous determination of anions (F-, Cl-, NO2-, SO42-, NO3-, and PO43-) and carbohydrates (glycerin, glucosyl glycerol, trehalose, mannose, glucose, galactose, fructose, ribose, and sucrose) in cyanobacteria. Interfering color compounds were removed by first passing the sample through graphitized carbon solid phase extraction (SPE) cartridges. Samples were applied to an AS11-HC column, which was used to separate the anions followed by quantification using a conductance detector. Carbohydrates eluted from the AS11-HC column were trapped and separated on a MA1 column and simultaneously quantified using electrochemical detection in the second dimension with valve switching. The following parameters were established: LOD, 0.001-0.030 (mg/L); LOQ, 0.001-0.010 (mg/L); linearity (R2), 0.9940; repeatability, 0.39-3.02%; and spiked recovery, 90.1-107%. The proposed method is adequately linear, accurate, and repeatable. The 2D-IC method provides fast, high-resolution, and completely automated procedure for the simultaneous determination of anions and carbohydrates without co-elution compared to the 1D ion chromatography method. This study provides application perspectives for use in biotechnology and other research fields. An accurate and effective 2D-IC method was developed for determining anions and carbohydrates in cyanobacteria. The method includes pre-treating samples with graphitized carbon SPE cartridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.