Abstract

Human parvovirus B19 (B19V) and human parvovirus 4 (PARV4) are two parvoviruses known to infect humans and transmit through blood and plasma derived medicinal products (PDMPs). Inactivation of the two parvoviruses has proven to be difficult and nucleic acid testing (NAT) would be an efficient means to exclude viruses. In this study, an internally controlled multiplex quantitative real-time PCR (qPCR) assay for B19V and PARV4 simultaneous detection and quantification was established and evaluated. The optimized multiplex qPCR assay allowed for simultaneous detection of all of the genotypes (1–3) of B19V and PARV4, with equal limit of quantification (LOQ) of 5 copies/μL, rather than other blood-borne viruses. It had a wide dynamic range of reliable amplification linearity of at least 8 orders of magnitude. Low standard deviations (SD) of quantification cycle (Cq) values and low coefficients of variation (CV) of copy numbers for both B19V and PARV4 suggested a high level of repeatability and reproducibility for the multiplex qPCR assay. This multiplex qPCR assay can be served as a readily applicable approach to screen plasma units intended for further manufacturing into PDMPs to reduce the risk of parvoviruses infection by such products and may also be useful for the detection of B19V/PARV4 co-infection or co-existence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call