Abstract
In the clinics, mammogram masses appear as asymmetric structures between the left and right breasts. In this paper, we design a bilateral image analysis method based on convolutional neural network which can detect and classify breast mass regions simultaneously. It mainly consists of three parts: a feature similarity based region matching technique, mass region of interest (ROI) selection step and a deep metric learning based classifier. Firstly, discriminative score maps are calculated relied on the deep features extracted from bilateral left and right mammograms respectively in global or local spatial image domain. The contralateral correspondences are determined by minimum discriminative scores. Secondly, to select the mass candidate ROIs and further remove false positive mass-to-normal pairs, we propose a dynamic histogram weighting mechanism with three new constrains imposed on the distribution of discriminative score histogram. In addition, a novel soft label based deep metric learning regularization is designed for mass ROI classifier to tackle the large variation of masses in shape, size, texture and breast density. We apply it to the open dataset Digital Database for Screening Mammography. Compared with other state-of-the-art approaches, the proposed scheme gives competitive results in classification and localization tasks for mammographic lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.