Abstract

Deep desulfurization of liquid fuels is an important and challenging issue in worldwide petroleum refining industry. Extraction and catalytic oxidative desulfurization (ECODS) of liquid fuels using a series of ionic liquids (ILs) with two functionalized groups, such as [(CH2)(2)COOHmim]Cl/nFeCl(3), [(CH2)(2)COOHmim]Cl/nZnCl(2), and [Amim]Cl/nFeCl(3), was studied. In the ECODS, the ILs were used as both extractant and catalyst and 30 wt% hydrogen peroxide (H2O2) solution as oxidant. The effects of molar ratios of [(CH2)(2)COOHmim]Cl (or [Amim]Cl) to FeCl3 (or ZnCl2) in ILs, H2O2/sulfur (O/S) molar ratio, reaction temperature, and the nature of sulfur compounds on sulfur removal were investigated. The natures of the functional groups (-COOH, -CH2-CH=CH2) in cations and the acid strength of anions play important roles in the ECODS and affect the reaction time, temperature, and desulfurization efficiency of different substrates. Also, nitrogen-containing compounds (pyridine, pyrrole, and quinoline) could be removed simultaneously in the ECODS and had different effects on dibenzothiophene removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.