Abstract

Using solar energy to produce fresh water and electricity simultaneously is a prospective way to solve the problems combining fresh water shortage, energy crisis and farm land degradation in Northern Victoria. This paper records the process of calculating the performance of the nozzle applying homogenous equilibrium model, designing and testing the prototype of such system using three different types of the nozzles in static and rotary systems. The research on the project is divided into two steps: first is about static system in which the spray nozzle is proved to be the best in both production of fresh water and power generation; while on the second stage, the convergent–divergent (C–D) nozzles are the best in rotary system. Some data were analyzed theoretically based on the test and the results found that the percentage of fresh water measured by experiment is consistent with the calculation using homogenous equilibrium expansion model (HEM), however, there is big difference in power generation between theory and experiments. Based on our experimental figures and analysis, the reasons for low power generation are found and a new model is proposed. According to the new model, a different reaction turbine using curve length C–D nozzles is designed to overcome the problems which were encountered in the previous prototype. After analyzing the efficiency of the cycle by T– s diagram, the evacuated tube solar collector integrated heat pipe is suggested to be applied on this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call