Abstract

Biogenic amines are quality control criteria for foods that are potentially toxic to humans. In this study, amidation derivatization for biogenic amines and liquid–solid phase transition microextraction were carried out simultaneously for food sample pretreatment. The derivatization reaction was executed in one pot with coumarin-3-carboxylic acid as the derivatizing reagent and (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate as the coupling agent. Liquid–solid phase transition microextraction was achieved by the salting-out effect, using a phase change salt (1 M disodium hydrogen phosphate) solution. The combined derivatization and microextraction process was completed within 3 min at 30 °C, and the liquid top phase was easily obtained by placing the tube in an ice bath. Finally, a narrowbore liquid chromatograph coupled with a UV detector was used to determine the levels of six biogenic amines. The coupling agent-assisted derivatization and liquid–solid phase transition microextraction parameters were also investigated. The quantitative linear ranges were 3–400 μM for histamine, putrescine, spermidine, cadaverine, and tyramine and 5–400 μM for spermine, and the detection limit was 1 μM. The relative standard deviations of the intra- and inter-batches were <5.3% and 8.4%, respectively, while the relative error was <4.5% for both. We successfully applied this simultaneous derivatization–microextraction method to determine the biogenic amines in fermented foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.