Abstract

Decorating carbon nanotubes (CNTs) with nanoparticles has proved to be an intelligent approach to improve the gas adsorption properties of CNTs for the development of new sensors, including hydrogen sensors. However, in order to take advantage of this hybrid structure, methods are needed that ensure a proper decoration and the fabrication of small features without compromising the sensing surface. Within this paper, we report a novel technique to simultaneously decorate multiwall carbon nanotubes (MWCNTs) with gold–palladium nanoparticles and transfer them to a substrate by laser-induced forward transfer using femtosecond laser pulses. The nanoparticles decorating the MWCNTs present a spherical shape with a Feret diameter bellow 200 nm. The nanoparticle size can be tuned by varying the amount of pulses within the transfer. Finally, hydrogen adsorption showed up to a 20-fold increase compared to a sample composed of non-transferred, non-decorated MWCNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.