Abstract

Optical coherence tomography (OCT) has become a very promising diagnostic method in clinical practice, especially for ophthalmic diseases. However, speckle noise and low sampling rates have intensively reduced the quality of OCT images, which prevents the development of OCT-assisted diagnosis. Therefore, we propose a generative adversarial network-based approach (named SDSR-OCT) to simultaneously denoise and super-resolve OCT images. Moreover, we trained three different super-resolution models with different upscale factors (2× , 4× and 8×) to adapt to the corresponding downsampling rates. We also quantitatively and qualitatively compared our proposed method with some well-known algorithms. The experimental results show that our approach can effectively suppress speckle noise and can super-resolve OCT images at different scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.