Abstract

Assembled protein-based substances are emerging and promising classes of materials that provide unique properties for various applications in biotechnology and nanotechnolegy. Self-assembly is an effective way to immobilize protein. In this study, DNAs-conjugated bovine serum albumin (BSA) assembled into fibers via DNA hybridization is demonstrated. The morphology of fibers was observed by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), and the assembly mechanism was then analysed and discussed. BSA molecules were first linked by DNA molecule and formed linear chains. These chains then were parallelly linked through additional DNA hybridization. Finally, several BSA chains further assembled into fibers by layering lamellae in a parallel manner. This work perhaps will provide a guide to the immobilization of enzyme, which could be applied to increase its catalytic efficiency in biomedicine and nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.