Abstract

Study of dynamic processes in many areas of science has led to the appearance of functional data sets. It is often the case that individual trajectories vary both in the amplitude space and in the time space. We develop a coherent clustering procedure that allows for temporal aligning. Under this framework, closed form solutions of an EM type learning algorithm are derived. The method can be applied to all types of curve data but is particularly useful when phase variation is present. We demonstrate the method by both simulation studies and an application to human growth curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.