Abstract

The use of generalized sampled-data hold functions (GSHF) in the problem of simultaneous controller design for linear time-invariant plants is discussed. This problem can be stated as follows: given plants P/sub 1/, P/sub 2/, . . ., P/sub N/, find a controller C which achieves not only simultaneous stability, but also simultaneous optimal performance in the N given systems. By this, it is meant that C must optimize an overall cost function reflecting the closed-loop performance of each plant when it is regulated by C. The problem is solved in three aspects: simultaneous stabilization, simultaneous optimal quadratic performance, and simultaneous pole assignment in combination with simultaneous intersampling performance.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call