Abstract

We propose factor graph optimization for simultaneous planning, control, and trajectory estimation for collision-free navigation of autonomous systems in environments with moving objects. The proposed online probabilistic motion planning and trajectory estimation navigation technique generates optimal collision-free state and control trajectories for autonomous vehicles when the obstacle motion model is both unknown and known. We evaluate the utility of the algorithm to support future autonomous robotic space missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.