Abstract

This paper focuses on the simultaneous confidence region of a one-dimensional curve embedded in multi-dimensional space. Local linear regression is applied component-wise to each variable in multi-dimensional data, which yields an estimator of the one-dimensional curve. A simultaneous confidence region of the curve is proposed based on this estimator and theoretical results for the estimator and the region are developed under some reasonable assumptions. Practically efficient algorithms to determine the thickness of the region are also addressed. The effectiveness of the region is investigated through simulation studies and applications to artificial and real datasets, which reveal that the proposed simultaneous confidence region works well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.