Abstract

Abstract We present the first known method of constructing exact simultaneous confidence intervals for the analysis of orthogonal, saturated factorial designs. Given m independent, normally distributed, unbiased estimators of treatment contrasts, if there is an independent chi-squared estimator of error variance, then simultaneous confidence intervals based on the Studentized maximum modulus distribution are exact under all parameter configurations. In this paper, an analogous method is developed for the case of an orthogonal saturated design, for which the treatment contrasts are independently estimable but there is no independent estimator of error variance. Lacking an independent estimator of the error variance, the smallest sums of squares of effect estimators are pooled. The simultaneous confidence intervals are based on a probability inequality, for which the simultaneous confidence coefficient is achieved in the null case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.