Abstract

Consider a two-by-two factorial experiment with more than one replicate. Suppose that we have uncertain prior information that the two-factor interaction is zero. We describe new simultaneous frequentist confidence intervals for the four population cell means, with simultaneous confidence coefficient 1 − α, that utilize this prior information in the following sense. These simultaneous confidence intervals define a cube with expected volume that (a) is relatively small when the two-factor interaction is zero and (b) has maximum value that is not too large. Also, these intervals coincide with the standard simultaneous confidence intervals obtained by Tukey’s method, with simultaneous confidence coefficient 1 − α, when the data strongly contradict the prior information that the two-factor interaction is zero. We illustrate the application of these new simultaneous confidence intervals to a real data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.