Abstract

Simultaneous confidence bands for the mean of convex curves in a functional, design-based approach are presented. Specifically, a constrained functional Horvitz-Thompson estimator is proposed to address the constrained nature of the data. Indeed, a naive direct application of the functional Horvitz-Thompson estimator on the smoothed trajectories may lead to non-convex estimates. As a consequence, convex functions are defined as solutions of differential equations. Thus, data are embedded in the Hilbert space of square integrable functions, where ‘standard’ functional data analysis methodologies can be coherently interpreted. An approximation of the variance of the estimator is derived using the delta method. The coverage level of the estimated bands is evaluated through a simulation study. The proposed method is employed on a real dataset concerning the concentration of tourists daily expenditure in the Majella National Park, Central Italy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.