Abstract

Concentrating diverse microbes in a time and cost effective manner is an essential component in water quality monitoring of recreational beaches. Historically, detection of bacteria and viruses requires two different capture methods to detect both types of organisms in a given water sample. The purpose of this present study was to evaluate a newly devised dual layered filtration system, which was developed to simultaneously concentrate both viruses and bacteria in one step from marine waters. An apparatus was designed to accommodate two 90-mm diam., 0.45 microm pore size membranes in series, one on top of the other. The top polyvinylidene fluoride (PVDF) membrane was used to filter bacteria by physical straining while the bottom HA membrane retained viruses through adsorption. Results indicated that the dual layer filtration system recovered 83+/-14% of the test bacteria (Enterococcus fecalis) and 81+/-28% of the test virus (MS2 coliphage) on the top and bottom membranes, respectively. This research demonstrates the potential of using a dual layered filtration system for the simultaneous concentration of both bacteria and viruses on separate filters from recreational beach waters. This system is relatively simple to use, inexpensive, and has the potential to be suitable for routine monitoring. This study serves as a proof of concept for the technique. Additional experiments are needed to evaluate the system on a variety of different bacteria and viruses as well as on water with different physical and chemical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.