Abstract
A new technique is demonstrated for the simultaneous concentration and high-resolution separation of chiral compounds. With temperature gradient focusing, a combination of a temperature gradient, an applied electric field, and a buffer with a temperature-dependent ionic strength is used to cause analytes to move to equilibrium, zero-velocity points along a microchannel or capillary. Different analytes are thus separated spatially and concentrated in a manner that resembles isoelectric focusing but that is applicable to a greater variety of analytes including small chiral drug molecules. Chiral separations are accomplished by the addition of a chiral selector, which causes the different enantiomers of an analyte to focus at different positions along a microchannel or capillary. This new technique is demonstrated to provide high performance in a number of areas desirable for chiral separations including rapid separation optimization and method development, facile reversal of peak order (desirable for analysis of trace enantiomeric impurities), and high resolving power (comparable to capillary electrophoresis) in combination with greater than 1000-fold concentration enhancement enabling improved detection limits. In addition, chiral temperature gradient focusing allows for real-time monitoring of the interaction of chiral analyte molecules with chiral selectors that could potentially be applied to the study of other molecular interactions. Finally, unlike CE, which requires long channels or capillaries for high-resolution separations, separations of equivalent resolution can be performed with TGF in very short microchannels (mm); thus, TGF is inherently much more suited to miniaturization and integration into lab-on-a-chip-devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.