Abstract

ABSTRACT There are many effective techniques for virtual inertia emulation in DC microgrids that can help DC bus voltage stability through power exchange with virtual inertia injection. But one of the vexingly complicated challenges in virtual inertia emulation is the connection of unbalanced loads on the AC side of a DC microgrid. Unbalanced AC loads connected to a DC microgrid may cause severe fluctuations in DC bus voltage and battery power, as well as distorting AC side voltage. The need to solve this issue is very important because it can be a threat to the microgrid DC bus voltage stability and feed sensitive loads. One effective method to mimic the real inertia feature and dampen the unfavourable unbalanced conditions is to employ a virtual synchronous generator (VSG) equipped with a decoupled double synchronous reference frame (DDSRF) approach. The DDSRF can extract positive and negative components with high precision and create pure DC signals for the control system to improve accuracy and controllability. Hence, this paper investigates a combination of a VSG structure enhanced with a DDSRF technique to attenuate the fluctuations of DC bus voltage, battery power, and AC-side voltage caused by an unbalanced AC load in an islanded DC microgrid. The simulation results confirm that the unbalanced loads connected to the AC side of the microgrid are destructive for DC bus voltage, battery power, and also create voltage imbalances for AC loads. Furthermore, the proposed DDSRF-based VSG control system that has been implemented on the AC side of the microgrid can strongly dampen the fluctuations on the DC bus, battery, and AC loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call