Abstract

One of the challenges in laser direct writing with a high numerical-aperture objective is the severe axial focal elongation and the pronounced effect of the refractive-index mismatch aberration. We present the simultaneous compensation for the refractive-index mismatch aberration and the focal elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. By the use of circularly polarized beam illumination and a spatial light modulator, a complex and dynamic slit pupil aperture can be produced to engineer the focal spot. Such a beam shaping method can result in circularly symmetric fabrication along the lateral directions as well as the dynamic compensation for the refractive-index mismatch aberration even when the laser beam is focused into the material of a refractive index up to 2.35.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call