Abstract

The nonlinear dynamics of a base-excited slender beam carrying a lumped mass subjected to simultaneous combination parametric resonance of sum and difference type along with 1:3:5 internal resonances is investigated. Method of normal form is applied to the governing nonlinear temporal differential equation of motion to obtain a set of first-order differential equations which are used to obtain the steady-state, periodic, quasi-periodic and chaotic responses for different control parameters viz., amplitude and frequency of external excitation and damping. Frequency response, phase portraits, time spectra and bifurcation diagram are plotted to visualize the system behaviour with variation in the control parameters. Here, two distinct zones of trivial instability, blue sky catastrophe phenomena, jump down phenomena, simultaneous occurrence of periodic and chaotic orbits, period doubling of the mixed-mode periodic orbits leading to chaos, attractor merging crisis, boundary crisis, type II and on–off intermittencies are observed. Bifurcation diagram is plotted to facilitate the designer to choose a safe operating zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call