Abstract

Coded aperture snapshot spectral imaging (CASSI) reconstructs a hyperspectral image from several two-dimensional (2D) projections via compressive sensing. The reconstruction quality and the sampling efficiency of CASSI can be effectively improved by decreasing the coherence of the underlying sensing matrix. Efforts have been made to minimize the coherence with individual optimization on coded aperture or sparse basis. In this paper, a simultaneous optimization on the system projection and the over-complete dictionary is introduced to minimize the Frobenius norm coherence. The dual-disperser structure and the RGB image sensor are adopted for the lowest coherence in terms of system configuration. The coded aperture and the dictionary are optimized with genetic algorithm and gradient descent respectively, and simultaneous optimization is conducted iteratively. Low coherence of sensing matrix is acquired after the simultaneous optimization, with both reconstruction quality and sampling efficiency significantly improved. Compared to the non-optimized system and state-of-the-art systems with individually optimized coded aperture or dictionary, the simultaneous optimization promotes the peak signal-to-noise ratio by more than 5dB. The coherence minimization via simultaneous optimization on the system matrix and the sparse representation basis may open opportunities for further development of other compressive-sensing-based computational imaging systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.