Abstract

Enantiomeric separation of two triazole fungicides, triadimefon and triadimenol, was investigated in sulfated beta-cyclodextrin (sulfated beta-CD)-mediated capillary electrophoresis (CE) systems. It was found that, at pH 2-4, sulfated beta-CD exhibited strong chiral recognition towards both triadimefon and triadimenol. The enantiorecognition was believed to result from the multiple interactions between sulfated beta-CD and the analytes, which included inclusion effect, electrostatic interaction, and hydrogen bonding. Under optimal conditions (phosphate buffer with 2% sulfated beta-CD, pH 2.5), simultaneous resolution of all chiral isomers of triadimefon and triadimenol was achieved in less than half an hour. In conjunction with solvent extraction and subsequent enrichment by solid-phase extraction (SPE), this new enantioseparation method was applied successfully in the study of stereoselectivity associated with the biotransformation of triadimefon to triadimenol by soil microorganisms. The present methodology was superior to the commonly adopted chiral gas chromatography (GC) approach in that a very mild procedure was involved from sample extraction to the ultimate chiral separation. Thus, the disturbance of the enantiomeric distribution patterns of the original soil samples by heat stress was an unlikely scenario. Furthermore, it was discovered that, owing to the unique selectivity of the present separation strategy, there was virtually no interference from the soil matrix, which led to improvements in both sensitivity and selectivity in real sample determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.