Abstract
AbstractRechargeable aqueous zinc‐ion batteries hold great promise for potential applications in large‐scale energy storage, but the reversible insertion of bivalent Zn2+ and fast reaction kinetics remain elusive goals. Hence, a highly reversible Zn/VNx Oy battery is developed, which combines the insertion/extraction reaction and pseudo‐capacitance‐liked surface redox reaction mechanism. The energy storage is induced by a simultaneous reversible cationic (V3+ ↔ V2+) and anionic (N3− ↔ N2−) redox reaction, which are mainly responsible for the high reversibility and no structural degradation of VNxOy. As expected, a superior rate capability of 200 mA h g−1 at 30 A g−1 and high cycling stability up to 2000 cycles are achieved. This finding opens new opportunities for the design of high‐performance cathodes with fast Zn2+ reaction kinetics for advanced aqueous zinc‐ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced Functional Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.