Abstract

Ceria (CeO2)-based materials are potential catalysts for the removal of the Hg0 and AsH3 present in reducing atmospheres. However, theoretical studies investigating the Hg0 and AsH3 removal capacity of ceria remain limited. In this study, the adsorption behavior and mechanistic pathways for the catalytic oxidation of Hg0 and AsH3 on the CeO2(111) surface, including the calculation of optimized adsorption configurations and energies, were investigated using density functional theory calculations. The results suggest that Hg0 and AsH3 are favorably adsorbed on the CeO2(111) surface, whereas CO is not, which is crucial for selective removal when CO is a desirable gas component. Furthermore, AsH3 is adsorbed more favorably than Hg0. In addition, the calculations revealed that the Hg atom is initially adsorbed on the surface and then oxidized by lattice oxygen to form HgO. Concerning AsH3 decomposition, the stepwise dehydrogenation of AsH3 followed by bonding with lattice O atoms to form the As-O bond seems the most plausible. Finally, the adsorbed As-O bond is further forms elemental As and As2O3. Therefore, CeO2 can adsorb and remove Hg0 and AsH3, making it a promising catalyst for the simultaneous catalytic oxidation of Hg0 and AsH3 in strongly reducing off-gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call