Abstract

Electromagnetic induction (EMI) is a contactless and fast geophysical measurement technique. Frequency-domain EMI systems are available as portable rigid booms with fixed separations up to approximately 4 m between the transmitter and the receivers. These EMI systems are often used for high-resolution characterization of the upper subsurface meters (up to depths of approximately 1.5 times the maximum coil separation). The availability of multiconfiguration EMI systems, which measure multiple apparent electrical conductivity ([Formula: see text]) values of different but overlapping soil volumes, enables EMI data inversions to estimate electrical conductivity ([Formula: see text]) changes with depth. However, most EMI systems currently do not provide absolute [Formula: see text] values, but erroneous shifts occur due to calibration problems, which hinder a reliable inversion of the data. Instead of using physical soil data or additional methods to calibrate the EMI data, we have used an efficient and accurate simultaneous calibration and inversion approach to avoid a possible bias of other methods while reducing the acquisition time for the calibration. By measuring at multiple elevations above the ground surface using a multiconfiguration EMI system, we simultaneously obtain multiplicative and additive calibration factors for each coil configuration plus an inverted layered subsurface electrical conductivity model at the measuring location. Using synthetic data, we verify our approach. Experimental data from five different calibration positions along a transect line showed similar calibration results as the data obtained by more elaborate vertical electrical sounding reference measurements. The synthetic and experimental results demonstrate that the multielevation calibration and inversion approach is a promising tool for quantitative electrical conductivity analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.