Abstract

A pilot-scale trickling filter with dual layer support material was constructed and tested for simultaneous biological removal of ammonia, iron and manganese from potable water. The performance of the trickling filter was tested at constant hydraulic loading of 226 m 3/m 2 d while feed concentrations of iron, ammonia and manganese were varied between 0.5 and 4.0, 0.5 and 3.0, and 0.5 and 1.3 mg/l, respectively. The system was inoculated with a mixed culture and a series of experiments was performed to investigate the interactions among ammonia, iron and manganese removal when simultaneously present in the trickling filter. The oxidation reduction potential increased along the filter depth from about 150 to 600 mV, depending on the feed concentrations, thus enabling one-stage simultaneous removal of the three pollutants. Ammonia and iron drastically affected manganese oxidation and manganese was found to be the rate-limiting pollutant. The results are presented using an operating diagram of the system, that determines the range of operating conditions resulting in optimal operation, keeping iron, ammonia and manganese concentration under the maximum permitted limits in potable water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.