Abstract

Cyclohexanone monooxygenase (CHMO) catalyzing Baeyer-Villiger oxidation converts cyclic ketones into optically pure lactones, which have been used as building blocks in organic synthesis. A recombinant Escherichia coli BL21(DE3)/pMM4 expressing CHMO originated from Acinetobacter sp. NCIB 9871 was used to produce epsilon-caprolactone through a simultaneous biocatalyst production and Baeyer-Villiger oxidation (SPO) process. A fed-batch process was designed to obtain high cell density for improving production of epsilon-caprolactone. The fed-batch SPO process gave the best results, 10.2 g/L of epsilon-caprolactone and 0.34 g/(L.h) of productivity, corresponding to a 10.5- and 3.4-fold enhancement compared with those of the batch SPO, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.