Abstract

The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (Kd, 16.5 nM) and BPTI (Kd, 1, 490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (Kd, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (Kd, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (Kd, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (Kd, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (Kd, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand-ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call