Abstract

Although the influence of the Valsalva maneuver on the heart and circulatory system has been investigated, the mechanism of intrathoracic pressure influencing cardiovascular function is unclear. To test our hypothesis that the interaction between the anatomy-determined partially-intrathoracic system and the fully-intrathoracic system might explain those issues and help to disclose the mechanism, we used the Hitachi dual pulse wave Doppler echocardiographic apparatus to investigate simultaneously the beat-by-beat influence of 40-mmHg Valsalva maneuver on left and right cardiac ventricular filling in 30 male adult volunteers. The mitral and tricuspid blood inflow velocity spectra during the Valsalva maneuver were recorded simultaneously. The peak velocity (PV), velocity–time integral (VTI) and inflow volume (IV) of each cycle were measured or calculated. The PV, VTI and IV of the left heart remained unchanged at the first beat after the Valsalva maneuver onset (compared with those at rest, p>0.1) and then decreased gradually to the lowest at the 11±1.2th beat (range, 9th to 12th beat). Simultaneously, the PV, VTI and IV of the right heart decreased significantly (p<0.05) at the first cycle, decreased rapidly to the lowest at the 6±0.8th beat (range, 4th to 7th beat) and then increased gradually to the 9±1.3th beat (range, 8th to 10th beat). These results suggest that the left heart and right heart have different physiological responses to the Valsalva maneuver. These could be explained by our hypothesis, the interaction between the partially-intrathoracic system and the fully-intrathoracic system, which might help to disclose the mechanism of how intrathoracic pressure influences the heart and circulatory system.

Highlights

  • The Valsalva maneuver (VM) has been used to raise intrathoracic pressure to investigate cardiovascular hemodynamic responses to changes in intrathoracic pressure in healthy volunteers and patients for many years [1,2,3,4,5,6,7,8]

  • The values of the peak velocity (PV), velocity–time integral (VTI) and inflow volume (IV) were unchanged at the first beat after the onset of the VM, began to decrease gradually, fell to the lowest value at the 1161.2th beat and kept at this stable level until the release phase (Figure 3)

  • The IV of the left heart reached the peak at the 22nd beat and increased by 15.8% compared with that at rest

Read more

Summary

Introduction

The Valsalva maneuver (VM) has been used to raise intrathoracic pressure to investigate cardiovascular hemodynamic responses to changes in intrathoracic pressure in healthy volunteers and patients for many years [1,2,3,4,5,6,7,8]. The mechanism by which intrathoracic pressure influences cardiovascular function has always been of interest to physiologists and clinicians investigating circulatory disorders. Exploration of the mechanism has been hindered because the effects of intrathoracic pressure on left and right ventricular function were previously determined separately, not simultaneously [9,10]. We hypothesized that the left and right cardiac responses should be investigated simultaneously and compared on a beat-by-beat basis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call