Abstract

We have developed a new, fast, and simple 3-D imaging approach referred to as Simultaneous Azimuth and Fresnel Elevation (SAFE) compounding using a bias-sensitive crossed-electrode array. The principle behind this technique is to perform conventional plane-wave compounding with a back set of electrodes, while implementing a reconfigurable Fresnel elevation lens with an orthogonal set of front electrodes. While a Fresnel lens would usually result in unacceptable secondary lobe levels, these lobes can be suppressed by compounding different Fresnel patterns. The azimuthal and elevational planes can be simultaneously compounded to increase the beam quality with no loss in frame rate. A 10-MHz, $64 \times 64$ element crossed-electrode relaxor array was fabricated on an electrostrictive one-to-three composite substrate to demonstrate the SAFE compounding approach. The electrostrictive composite array has a measured electromechanical coupling coefficient ( $k_{t}$ ) of 0.62 with a bias voltage of 90 V and a measured two-way pulse bandwidth of 60%. The electrical impedance magnitude of array elements on resonance was measured to be $90~\Omega$ with a phase angle of -35°. Radiation patterns were simulated showing a -6-dB beamwidth of $330~\mu \text{m}$ with secondary lobe levels suppressed more than -60 dB in the azimuth dimension, and a -6-dB beamwidth of $450~\mu \text{m}$ with secondary lobe levels suppressed to -50 dB in the elevation dimension after 64 compounds. Experimental radiation patterns were collected and found to be in good agreement with simulations. Experimental 3-D images of wire phantoms were collected using a Verasonics experimental ultrasound system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.