Abstract
Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. The allocation and prices are then resolved for each item separately, based solely on the bids submitted on that item. We study the efficiency of Bayes-Nash equilibrium (BNE) outcomes of simultaneous first- and second-price auctions when bidders have complement-free (a.k.a. subadditive) valuations. While it is known that the social welfare of every pure Nash equilibrium (NE) constitutes a constant fraction of the optimal social welfare, a pure NE rarely exists, and moreover, the full information assumption is often unrealistic. Therefore, quantifying the welfare loss in Bayes-Nash equilibria is of particular interest. Previous work established a logarithmic bound on the ratio between the social welfare of a BNE and the expected optimal social welfare in both first-price auctions (Hassidim et al., 2011) and second-price auctions (Bhawalkar and Roughgarden, 2011), leaving a large gap between a constant and a logarithmic ratio. We introduce a new proof technique and use it to resolve both of these gaps in a unified way. Specifically, we show that the expected social welfare of any BNE is at least 1/2 of the optimal social welfare in the case of first-price auctions, and at least 1/4 in the case of second-price auctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.