Abstract

This study was performed to assess the relationships between prohormone transport and processing in separate cell types in pancreatic islet tissue. Anglerfish islets were subjected to pulse-chase incubation with [3H]tryptophan and/or [35S]cysteine. Tissue and media were removed at specific time points during the incubation and prepared for electron microscopic examination or biochemical analysis. Specific islet cell types were identified ultrastructurally using protein A gold immunocytochemistry. Transport of newly synthesized peptides through specific subcellular compartments was monitored using electron microscopic autoradiography. Prohormone-product ratios were established by gel filtration and high-performance liquid chromatography analyses of tissue extracts. Complete analyses were performed on A-cells (source of proglucagon-II, glucagon-II, and glucagon-like peptide-II), B-cells (proinsulin and insulin), D-cells (prosomatostatin-II and somatostatin-28), and S-cells (prosomatostatin-I and somatostatin-14). Transport of newly synthesized peptides proceeded from rough endoplasmic reticulum (RER) to Golgi complex and then to mature secretory granules in all cell types. The transport rate was most rapid in A- and B-cells, slower in S-cells, and slowest in D-cells. The T1/2 for conversion of prohormone to product(s) was shortest in S-cells (150 min), slightly longer in B-cells (155 min), much longer in D-cells (259 min), and greater than 300 min in A-cells. These results demonstrate that the transport/prohormone conversion relationships are unique in each of the islet cell types monitored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call