Abstract

Few techniques can assess phenotype and fate for the same cell simultaneously. Most of the current protocols used to characterize phenotype, although able to generate large datasets, necessitate the destruction of the cell of interest, making it impossible to assess its functional fate. Heterogeneous biological differentiating systems like hematopoiesis are therefore difficult to describe. Building on cell division tracking dyes, we further developed a protocol to simultaneously determine kinship, division number, and differentiation status for many single hematopoietic progenitors. This protocol allows the assessment of the ex vivo differentiation potential of murine and human hematopoietic progenitors, isolated from various biological sources. Moreover, as it is based on flow cytometry and a limited number of reagents, it can quickly generate a large amount of data, at the single-cell level, in a relatively inexpensive manner. We also provide the analytical pipeline for single-cell analysis, combined with a robust statistical framework. As this protocol allows the linking of cell division and differentiation at the single-cell level, it can be used to quantitatively assess symmetric and asymmetric fate commitment, the balance between self-renewal and differentiation, and the number of divisions for a given commitment fate. Altogether, this protocol can be used in experimental designs aiming to unravel the biological differences between hematopoietic progenitors, from a single-cell perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call