Abstract

Plants respond to water shortage by regulating biochemical pathways which result in the biosynthesis of osmotic compounds. Active metabolites and compatible osmolytes control the inhibition of oxygen free radicals and dehydration. The physiological response of scrophularia striata to drought stress, a factorial completely randomized design (FCRD) experiment was conducted in three replication. Drought stress was induced at two levels (100% and 50% field capacity), and salicylic acid (SA) and silicon (Si) and Ecotype were also used at two levels of (0 and 100 PPM), (0 and 1 g/L) and (Ilam and Abdanan) respectively. Data analysis results indicated that the H2O2 content, Malondialdehyde (MDA), glycine betaine (GB) and the activity of the enzyme glutathione reductase (GR; EC 1.6.4.2) of aerial parts increased during the entire stress exposure period. Although the SA + Si + stress + ecotype interaction increased the content of soluble carbohydrate s and the GR activity in aerial parts of Ilam and Abdanan ecotypes, this interaction led to a decrease in MDA, H2O2 in Ilam ecotypes. The interaction between the stress + SA + Si + ecotype led to an increase in the phenylalanine ammonialyase (PAL; EC 4.3.1.5) activity in the Abdanan ecotype, but no important difference was observed. As compared to the control treatment, the content of Polyphenol increased, The interaction between ecotype + stress + Si caused to increased the of proline content in the Abadanan ecotype. The results showed that the increase in antioxidant defense and compatible osmolytes due to the use of SA and Si can improve the drought tolerance in S.striata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call