Abstract

Due to the global challenge of donor kidney shortage, expanding the pool of deceased donors has been proposed to include expanded criteria donors. However, the lack of methods to precisely measure donor kidney injury and predict the outcome still leads to high discard rates and recipient complications. As such, evaluation of deceased donor kidney quality is critical prior to transplantation. Biomarkers from donor urine or serum provide potential advantages for the precise measure of kidney quality. Herein, simultaneous detection of secretory leukocyte peptidase inhibitor (SLPI) and interleukin 18 (IL-18), two important kidney injury biomarkers, has been achieved, for the first time, with an ultra-high sensitivity using surface enhanced Raman scattering (SERS). Specifically, black phosphorus/gold (BP/Au) nanohybrids synthesized by depositing Au nanoparticles (NPs) onto the BP nanosheets serve as SERS-active substrates, which offer a high-density of inherent and accessible hot-spots. Meanwhile, the nanohybrids possess biocompatible surfaces for the enrichment of target biomarkers through the affinity with BP nanosheets. Quantitative detection of SLPI and IL-18 were then achieved by characterizing SERS signals of these two biomarkers. The results indicate high sensitivity and excellent reproducibility of this method. The limits of detection reach down to 1.53×10-8 mg/mL for SLPI and 0.23×10-8 mg/mL for IL-18. The limits of quantification are 5.10×10-8 mg/mL and 7.67×10-9 mg/mL for SLPI and IL-18. In addition, simultaneous detection of these biomarkers in serum was investigated, which proves the feasibility in biologic environment. More importantly, this method is powerful for detecting multiple analytes inheriting from excellent multiplexing ability of SERS. Giving that the combined assessment of SLPI and IL-18 expression level serves as an indicator of donor kidney quality and can be rapidly and reproducibly conducted, this SERS-based method holds great prospective in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.