Abstract

Oligonucleotide ligation assay (OLA) is a highly specific and relatively simple method to detect point mutations encoding HIV-1 drug-resistance, which can detect mutants comprising ≥2–5% of the viral population. Nevirapine (NVP), tenofovir (TDF) and lamivudine (3TC) are antiretroviral (ARV) drugs used worldwide for treatment of HIV infection and prevention of mother-to-child-transmission. Adapting the OLA to detect multiple mutations associated with HIV resistance to these ARV simultaneously would provide an efficient tool to monitor drug resistance in resource-limited settings. Known proportions of mutant and wild-type plasmids were used to optimize a multiplex OLA for detection of K103N, Y181C, K65R, and M184V in HIV subtypes B and C, and V106M and G190A in subtype C. Simultaneous detection of two mutations was impaired if probes annealed to overlapping regions of the viral template, but was sensitive to ≥2–5% when testing codons using non-overlapping probes. PCR products from HIV-subtype B- and C-infected individuals were tested by multiplex-OLA and compared to results of single-codon OLA. Multiplex-OLA detected mutations at codon pairs 103/181, 106/190 and 65/184 reliably when compared to singleplex-OLA in clinical specimens. The multiplex-OLA is sensitive and specific and reduces the cost of screening for NVP, TDF and/or 3TC resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call