Abstract

In this paper, a new sensor system for simultaneous and quasi-independent strain and temperature measurements is presented. The interrogation of the sensing head has been carried out by monitoring the FFT phase variations of two of the microstructured optical fiber (MOF) cavity interference frequencies. This method is independent of the signal amplitude and also avoids the need to track the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a range of temperature of 30°C–75°C, and 380μe of maximum strain were applied; being the sensitivities achieved of 127.5pm/°C and −19.1pm/μe respectively. Because the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.