Abstract
Polyaniline silica (Silica/PANI) organic-inorganic nanocomposite was synthesized by combining electrospinning and in-situ polymerization processes. This strategy prevented the aggregation of PANI during the polymerization and led to higher synthesis's yield and more uniformity of the produced composite. The structure and morphology of the nanocomposite was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The prepared nanocomposite was then packed inside a stain-steel needle and evaluated as a needle trap device (NTD), for simultaneous headspace extraction of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in polluted soil samples, before GC-FID analysis, as a low-cost and robust detector. Response surface methodology (RSM) involving Box-Behnken design (BBD) was implemented to evaluate the effective experimental variables and subsequent introduction of a multiple function to describe the experimental conditions for the extraction of the analytes. Wide calibration plots (1-2000 ng g−1 for BTEX and 0.2–2000 ng g−1 for PAHs) with acceptable linearity (R2 > 0.99) were obtained under the optimal conditions. The limits of detection were found to be 0.02–0.1 ng g−1for BTEX and 0.001–0.01 ng g−1 for PAHs. The calculated standard deviations were 7.3–13.2% (n = 6). The developed NTD-GC-FID method was successfully applied for the extraction and determination of PAHs and BTEX in contaminated soil samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.