Abstract

Liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique for the analysis of non-volatile small organic molecules. However, one-dimensional liquid chromatography (1D-LC) cannot efficiently deal with mixtures of analytes with different physicochemical properties and, thus, specific chromatographic behaviour. As an alternative, this work proposes a two-dimensional liquid chromatography/high-resolution mass spectrometry (2D-LC-HRMS) approach for the simultaneous analysis of compounds with different polarities. It is based on the combination of hydrophilic interaction liquid chromatography (HILIC) in the first dimension (1D) and reversed-phase chromatography (RPLC) in the second dimension (2D), employing the heart-cutting methodology. The coupling between 1D and 2D was performed by a multiple heart-cutting (MHC) interface equipped with an active solvent modulation (ASM) valve. The aim of the study was the development of a 2D-LC methodology able to (i) acquire the 1D and 2D content by MS in a single analytical run, avoiding the loss of information caused by the MHC algorithm for filling the sampling loops; (ii) overcome the breakthrough problem caused by solvent incompatibility, modifying the 2D gradient during the ASM phase for this purpose. To evaluate the 2D-LC approach, pesticide residue analysis was proposed, selecting 20 pesticides covering a wide range of polarities (log Kow from −3.2 to 4.3) and including some of the so-called single residue method pesticides because of the difficulty of including them in 1D-LC multi-residue methods with satisfactory chromatographic resolution. The proposed strategy was to transfer in a single cut the void volume from the HILIC separation (consisting of the nonpolar pesticides) to the 2D for analysis under RPLC conditions. The developed assembly was assessed in a vegetable matrix (tomato) employing a hybrid QuEChERS/QuPPe sample treatment based on acetonitrile and methanol extraction. The proposed setup may be extended for 2D-LC applications where it is essential to acquire the entire content of both dimensions in a single data file just by coupling a selection valve to the MHC interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call