Abstract
Doping analysis is a two-step process consisting of a screening step for prohibited substances and a confirmation step to verify the presence of specific substances found during the screening. The entire process must be performed within a limited time period, but traditional screening procedures commonly employ separate analytical methods for each class of prohibited substances being screened and thus require a great deal of human resources and instrumentation. A single simple and rapid multiresidue analytical method that could accommodate multiple classes of prohibited substances would be extraordinarily useful in doping analyses. Urine samples were extracted via two consecutive liquid-liquid extractions at different pH values following enzymatic hydrolysis. Analyses were performed by ultrafast liquid chromatography/triple-quadrupole mass spectrometry with polarity switching and time-dependent selected reaction monitoring. We developed a rapid multiresidue screening and confirmation method for efficient high-throughput doping analyses. The present method was validated with regard to the limits of detection (0.01-100.0 ng/mL for screening analyses and 0.2-500.0 ng/mL for confirmation assays), matrix effects (48.9-118.9%), recovery (20.6-119.7%) and intra- (0.6-17.6%) and inter-day (4.0-20.0%) precision. A multiresidue analytical method was developed and validated for screening and confirming the presence of performance-enhancing drugs. A total of 210 substances from diverse classes of prohibited substances were successfully identified with an analytical run time of 10 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.