Abstract

As a solution to the problems of mass transfer limitation in submerged cultures and scale up of solid-state/liquid-surface cultures, an alternating liquid phase–air phase bioreactor was developed. It consisted of a bioreactor equipped with a siphon system and a reservoir. Aspergillus awamori was immobilized in loofa sponge inside the bioreactor and culture broth was pumped from the reservoir into the bioreactor. Each time the culture broth level reached a critical level, the broth automatically siphoned back into the reservoir. Thus the immobilized cells were alternatingly submerged and exposed to air. The duration of each phase was controlled by the pumping rate and with an on-off timer. During amylase production from soluble starch and raw cassava starch, the optima ratios of the liquid to air phases were 12 h : 12 h and 3 h : 6 h respectively. Saccharomyces cerevisiae IR2 was immobilized in the reservoir and the system was used for simultaneous amylase production, hydrolysis and ethanol production from raw cassava starch. The process was very stable for more than 7 batches with high ethanol yield of 0.46 g-ethanol/g-starch and productivity of 1.73 g-ethanol/L/h. These values are high, the system can be scaled up, and thus it has many potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call