Abstract

Herein, NaP and LTA zeolites were successfully synthesised from woody biomass ash with alkali fusion-assisted hydrothermal method by altering the NaOH/ash ratio, crystallisation time and crystallisation temperature. In order to reduce the synthesis costs, NaP zeolite was synthesised with no additional source of aluminium and silicon. The synthesised zeolites were utilized for the monocomponent and simultaneous adsorption of Cu(II), Cd(II), Pb(II) and Zn(II) ions. The maximum adsorbed amount of metals had the trend Pb(II) > Cu(II) > Cd(II) > Zn(II) for both NaP and LTA zeolite. The kinetic data fit well to the pseudo-second order model indicating that chemisorption is the rate-limiting step. The isotherm data were well described with Sips and Redlich-Peterson models indicating a non-ideal heterogeneous adsorption process. Maximum adsorption capacity of NaP zeolite was 42.9 mg/g for Cu(II) and 117.3 mg/g for Cd(II), while LTA had 140.1 mg/g and 223.5 mg/g for Cu(II) and Cd(II) ions, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.