Abstract

BackgroundHistone deacetylases (HDACs) target various genes responsible for cognitive functions. However, chromatin readers, particularly bromodomain-containing protein 4 (BRD4), are capable to change the final products of genes. The objective of this study was to evaluate the simultaneous effects of inhibition of HDACs and BRD4 on spatial and aversive memories impaired by amyloid β (Aβ) in a rat model of Alzheimer’s disease (AD) considering CREB and TNF-α signaling. MethodsForty male Wistar rats aged 3 months were randomly divided into five groups: saline +DMSO, Aβ+saline+DMSO, Aβ+JQ1, Aβ+MS-275, Aβ+JQ1+MS-275, and received the related treatments. MS-275, is the second generation of HDACs inhibitor, and JQ1 is a potent inhibitor of the BET family of bromodomain proteins in mammals. After the treatments, cognitive function was assessed by Morris water maze (MWM) and passive avoidance learning (PAL). The hippocampal level of mRNA for CREB and TNF-α, and also phosphorylated CREB were measured using real-time PCR and western blotting respectively. ResultsAdministration of JQ1 and MS-275, either separately or simultaneously, improved acquisition and retrieval of spatial and aversive memories as it was evident by decreased escape latency and increased time spent in the target quadrant (TTS) in Morris water maze (MWM), together with increase in step-through latency, but reduced time spent in the dark zone time in passive avoidance learning (PAL) compared with Aβ+saline+DMSO. Furthermore, there was a significant rise in the hippocampal level of CREB mRNA and phosphorylated CREB, but a reduction in TNF-α expression in comparison with Aβ + Saline. ConclusionSimultaneous administration of JQ1 and MS-275 improves acquisition and retrieval of both spatial and aversive memories partly via CREB and TNF-α signaling with no superiority to monotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call