Abstract

The regulation of medium-chain-length polyhydroxyalkanoates (mcl-PHA) metabolism in Pseudomonas putida GPo1 was studied by analysis of enzymes bound to PHA granules and enzymes involved in fatty acid oxidation. N-terminal sequencing of granule-bound enzymes revealed the presence of PHA polymerase (PhaC) and PHA depolymerase (PhaZ) and an acyl-CoA synthetase (ACS1), which recently was found to be associated with PHA granules by in vivo study. The acs1 knockout mutant accumulated 30-50% less PHA than its parental strain, confirming the involvement of ACS1 in PHA metabolism. Isolated PHA granules showed both PhaC and PhaZ activities. PhaC activity was found to be sensitive to the ratio of [R-3-hydroxyacyl-CoA]/[CoA] in which free CoA was a mild competitive inhibitor. Fatty acid oxidation was regulated by the [acetyl-CoA]/[CoA] and [NADH]/[NAD] ratios, with high ratios resulting in accumulation and low ratios leading to rapid oxidation of 3-hydroxyacyl-CoA. These results suggest that PHA metabolism is likely to be controlled by the [acetyl-CoA]/[CoA] and [NADH]/[NAD] ratios. The physiological roles of simultaneous PHA accumulation and degradation are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.