Abstract
This paper presents a new approach for the simultaneous estimation of the 3D pose and specific shape of a previously unseen face from a single image. The face pose is not limited to a frontal view. We describe a holistic approach based on a deformable 3D model and a learned statistical facial texture model. Rather than obtaining a person-specific facial surface, the goal of this work is to compute person-specific 3D face shape in terms of a few control parameters that are used by many applications. The proposed holistic approach estimates the 3D pose parameters as well as the face shape control parameters by registering the warped texture to a statistical face texture, which is carried out by a stochastic and genetic optimizer. The proposed approach has several features that make it very attractive: (i) it uses a single grey-scale image, (ii) it is person-independent, (iii) it is featureless (no facial feature extraction is required), and (iv) its learning stage is easy. The proposed approach lends itself nicely to 3D face tracking and face gesture recognition in monocular videos. We describe extensive experiments that show the feasibility and robustness of the proposed approach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.