Abstract

Ultra-broadband networks are currently attracting significant interests in employing wireless access and optical fiber access to the home and to the building at symbol rate reaching Gb/s. OFDM is a multicarrier modulation technique and considered to offer significant reduction of the data symbol to be carried per carrier channel, especially in ultra-high speed optical communications with bit rate reaching 100 Gb/s or even higher. This paper thus presents a novel and generic OFDM system employing both MATLAB Simulink and FPGA-based development software platform for simulation as well as hardware implementation for the generation and detection of OFDM signals for wireless and optical communications transmission media. Although the transmission medium is modeled with delay distortion filter in the baseband, this model would be valid for passband signals as the amplitude is represented by complex amplitude whose phase would be the phase of the carrier. The Simulink and hardware models presented hereunder are scalable to much higher speed allowing possible implementation in multi-Giga samples per second electronic processors. The sub-systems of the OFDM transmitter and receiver are presented to demonstrate the feasibility of such models for ultra-wideband communication systems such as wireless access and long haul optical fiber communication backbone networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call