Abstract

Stochastic partial differential equations (SPDEs) are ubiquitous in engineering and computational sciences. The stochasticity arises as a consequence of uncertainty in input parameters, constitutive relations, initial/boundary conditions, etc. Because of these functional uncertainties, the stochastic parameter space is often high-dimensional, requiring hundreds, or even thousands, of parameters to describe it. This poses an insurmountable challenge to response surface modeling since the number of forward model evaluations needed to construct an accurate surrogate grows exponentially with the dimension of the uncertain parameter space; a phenomenon referred to as the curse of dimensionality. State-of-the-art methods for high-dimensional uncertainty propagation seek to alleviate the curse of dimensionality by performing dimensionality reduction in the uncertain parameter space. However, one still needs to perform forward model evaluations that potentially carry a very high computational burden. We propose a novel methodology for high-dimensional uncertainty propagation of elliptic SPDEs which lifts the requirement for a deterministic forward solver. Our approach is as follows. We parameterize the solution of the elliptic SPDE using a deep residual network (ResNet). In a departure from traditional squared residual (SR) based loss function for training the ResNet, we introduce a physics-informed loss function derived from variational principles. Specifically, our loss function is the expectation of the energy functional of the PDE over the stochastic variables. We demonstrate our solver-free approach through various examples where the elliptic SPDE is subjected to different types of high-dimensional input uncertainties. Also, we solve high-dimensional uncertainty propagation and inverse problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.