Abstract

The technologies of wavelength division multiplexing (WDM) have been theoretically studied and analyzed for multiplexing fiber Bragg grating (FBG) in a single optical fiber. This method allows a single fiber to carry many of identical FBGs, making this sensor more appropriate in the nuclear reactors. The analysis demonstrates that the multiplexing capacity can be incredibly enhance small data rates and high channel spacing. The interference effect among FBGs multi-reflections channels must be taken into account. This paper simulate WDM based FBG for a channel spacing of 0.1, 0.3, 0.5, 0.8, 1 nm Gaussian apodized FBGs at data rates of 2.5, 10, 40,100,160, 250 Gb/s respectively for nuclear applications. All simulations were performed in Optisystem software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.