Abstract

Amphiphilic proteins and peptides can induce the formation of stable and metastable pores in membranes. Using coarse-grained simulations, we have studied the factors that affect structure of peptide-stabilized pores. Our simulations are able to reproduce the formation of the well-known barrel-stave or toroidal pores, but in addition, we find evidence for a novel "double-belt" pore structure: in this structure the peptides that coat the membrane pore are oriented parallel to the membrane plane. To check the predictions of our coarse-grained model, we have performed more detailed simulations, using the MARTINI force field. These simulations show that the double-belt structure is stable up to at least the microsecond time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.